These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxazolomycin biosynthesis in Streptomyces albus JA3453 featuring an "acyltransferase-less" type I polyketide synthase that incorporates two distinct extender units. Author: Zhao C, Coughlin JM, Ju J, Zhu D, Wendt-Pienkowski E, Zhou X, Wang Z, Shen B, Deng Z. Journal: J Biol Chem; 2010 Jun 25; 285(26):20097-108. PubMed ID: 20406823. Abstract: The oxazolomycins (OZMs) are a growing family of antibiotics produced by several Streptomyces species that show diverse and important antibacterial, antitumor, and anti-human immunodeficiency virus activity. Oxazolomycin A is a peptide-polyketide hybrid compound containing a unique spiro-linked beta-lactone/gamma-lactam, a 5-substituted oxazole ring. The oxazolomycin biosynthetic gene cluster (ozm) was identified from Streptomyces albus JA3453 and localized to 79.5-kb DNA, consisting of 20 open reading frames that encode non-ribosomal peptide synthases, polyketide synthases (PKSs), hybrid non-ribosomal peptide synthase-PKS, trans-acyltransferases (trans-ATs), enzymes for methoxymalonyl-acyl carrier protein (ACP) synthesis, putative resistance genes, and hypothetical regulation genes. In contrast to classical type I polyketide or fatty acid biosynthases, all 10 PKS modules in the gene cluster lack cognate ATs. Instead, discrete ATs OzmM (with tandem domains OzmM-AT1 and OzmM-AT2) and OzmC were equipped to carry out all of the loading functions of both malonyl-CoA and methoxymalonyl-ACP extender units. Strikingly, only OzmM-AT2 is required for OzmM activity for OZM biosynthesis, whereas OzmM-AT1 seemed to be a cryptic AT domain. The above findings, together with previous results using isotope-labeled precursor feeding assays, are assembled for the OZM biosynthesis model to be proposed. The incorporation of both malonyl-CoA (by OzmM-AT2) and methoxymalonyl-ACP (by OzmC) extender units seemed to be unprecedented for this class of trans-AT type I PKSs, which might be fruitfully manipulated to create structurally diverse novel compounds.[Abstract] [Full Text] [Related] [New Search]