These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Subregional topography of capillaries in the dorsal vagal complex of rats: I. Morphometric properties. Author: Shaver SW, Pang JJ, Wall KM, Sposito NM, Gross PM. Journal: J Comp Neurol; 1991 Apr 01; 306(1):73-82. PubMed ID: 2040730. Abstract: Cytoarchitectonic and neurochemical studies of the dorsal vagal complex in the caudal medulla oblongata of rats indicate the existence of distinct anatomical and functional compartments within its components. We applied morphometric methods to discern whether capillary networks differed quantitatively between subregions and zones of area postrema, nucleus tractus solitarii (NTS), and dorsal motor nucleus of the vagus nerve (DMN) of rats. Analysis of 11 subdivisions of area postrema identified both "true" (range in luminal diameter of 3-7.5 microns) and sinusoidal (luminal diameter greater than 7.5 microns) capillaries that, together, made the capillary density for most of area postrema 75% greater than that found in NTS and DMN (526/mm2 vs about 300/mm2). The rank order of true capillary density in area postrema along its rostracaudal axis was caudal greater than central greater than rostral, whereas the reverse order was true for sinusoidal capillaries. Dorsal (periventricular) and medial zones of area postrema throughout its rostrocaudal axis tended to have higher values for capillary density, volume, surface area, luminal diameter, and pericapillary space volume than lateral or ventral zones bordering NTS. Within 200 microns of obex, the ventral zone of rostral area postrema was distinct, having a relatively sparse capillary density that may indicate morphological specializations limiting blood-tissue communication in this subregion. There were no quantitative differences in capillary dimensions between DMN and three subnuclei of NTS. These studies add to extant evidence that the dorsal vagal complex is differentiated for specific functions. Area postrema, especially, has topographical diversity in its capillary organization that likely corresponds to complex roles in neuroendocrine, autonomic, and chemosensory mechanisms.[Abstract] [Full Text] [Related] [New Search]