These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic relationships between body condition score and reproduction traits in Canadian Holstein and Ayrshire first-parity cows.
    Author: Bastin C, Loker S, Gengler N, Sewalem A, Miglior F.
    Journal: J Dairy Sci; 2010 May; 93(5):2215-28. PubMed ID: 20412937.
    Abstract:
    The objective of this study was to investigate the genetic relationship between body condition score (BCS) and reproduction traits for first-parity Canadian Ayrshire and Holstein cows. Body condition scores were collected by field staff several times over the lactation in herds from Québec, and reproduction records (including both fertility and calving traits) were extracted from the official database used for the Canadian genetic evaluation of those herds. For each breed, six 2-trait animal models were run; they included random regressions that allowed the estimation of genetic correlations between BCS over the lactation and reproduction traits that are measured as a single lactation record. Analyses were undertaken on data from 108 Ayrshire herds and 342 Holstein herds. Average daily heritabilities of BCS were close to 0.13 for both breeds; these relatively low estimates might be explained by the high variability among herds and BCS evaluators. Genetic correlations between BCS and interval fertility traits (days from calving to first service, days from first service to conception, and days open) were negative and ranged between -0.77 and -0.58 for Ayrshire and between -0.31 and -0.03 for Holstein. Genetic correlations between BCS and 56-d nonreturn rate at first insemination were positive and moderate. The trends of these genetic correlations over the lactation suggest that a genetically low BCS in early lactation would increase the number of days that the primiparous cow was not pregnant and would decrease the chances of the primiparous cow to conceive at first service. Genetic correlations between BCS and calving traits were generally the strongest at calving and decreased with increasing days in milk. The correlation between BCS at calving and maternal calving ease was 0.21 for Holstein and 0.31 for Ayrshire and emphasized the relationship between fat cows around calving and dystocia. Genetic correlations between calving traits and BCS during the subsequent lactation were moderate and favorable, indicating that primiparous cows with a genetically high BCS over the lactation would have a greater chance of producing a calf that survived (maternal calf survival) and would transmit the genes that allowed the calf to be born more easily (maternal calving ease) and to survive (direct calving ease).
    [Abstract] [Full Text] [Related] [New Search]