These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intragenomic and intraspecific heterogeneity in rrs may surpass interspecific variability in a natural population of Veillonella. Author: Michon AL, Aujoulat F, Roudière L, Soulier O, Zorgniotti I, Jumas-Bilak E, Marchandin H. Journal: Microbiology (Reading); 2010 Jul; 156(Pt 7):2080-2091. PubMed ID: 20413553. Abstract: As well as intraspecific heterogeneity, intragenomic heterogeneity between 16S rRNA gene copies has been described for a range of bacteria. Due to the wide use of 16S rRNA gene sequence analysis for taxonomy, identification and metagenomics, evaluating the extent of these heterogeneities in natural populations is an essential prerequisite. We investigated inter- and intragenomic 16S rRNA gene heterogeneity of the variable region V3 in a population of 149 clinical isolates of Veillonella spp. of human origin and in 13 type or reference Veillonella strains using PCR-temporal temperature gel electrophoresis (TTGE). 16S rRNA gene diversity was high in the studied population, as 45 different banding patterns were observed. Intragenomic heterogeneity was demonstrated for 110 (74 %) isolates and 8 (61.5 %) type or reference strains displaying two or three different gene copies. Polymorphic nucleotide positions accounted for 0.5-2.5 % of the sequence and were scattered in helices H16 and H17 of the rRNA molecule. Some of them changed the secondary structure of H17. Phylotaxonomic structure of the population based on the single-copy housekeeping gene rpoB was compared with TTGE patterns. The intragenomic V3 heterogeneity, as well as recombination events between strains or isolates of different rpoB clades, impaired the 16S rRNA-based identification for some Veillonella species. Such approaches should be conducted in other bacterial populations to optimize the interpretation of 16S rRNA gene sequences in taxonomy and/or diversity studies.[Abstract] [Full Text] [Related] [New Search]