These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of flavor of whey protein hydrolysates.
    Author: Leksrisompong PP, Miracle RE, Drake M.
    Journal: J Agric Food Chem; 2010 May 26; 58(10):6318-27. PubMed ID: 20415487.
    Abstract:
    Twenty-two whey protein hydrolysates (WPH) obtained from 8 major global manufacturers were characterized by instrumental analysis and descriptive sensory analysis. Proximate analysis, size exclusion chromatography, and two different degrees of hydrolysis (DH) analytical methods were also conducted. WPH were evaluated by a trained descriptive sensory panel, and volatile compounds were extracted by solid phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). Eleven representative WPH were selected, and 15 aroma active compounds were quantified by GC-MS via the generation of external standard curves. Potato/brothy, malty, and animal flavors and bitter taste were key distinguishing sensory attributes of WPH. Correlations between bitter taste intensity, degree of hydrolysis (using both methods), and concentration of different molecular weight peptides were documented, with high DH samples having high bitter taste intensity and a high concentration of low molecular weight peptides and vice versa. The four aroma-active compounds out of 40 detected by GC-O present at the highest concentration and with consistently high odor activity values in WPH were Strecker derived products, dimethyl sulfide (DMS), 3-methyl butanal, 2-methyl butanal, and methional. Orthonasal thresholds of WPH were lower (p < 0.05) than basic taste thresholds suggesting that aromatics and bitter taste are both crucial to control in WPH food applications.
    [Abstract] [Full Text] [Related] [New Search]