These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes.
    Author: Zhao X, Lu X, Tze WT, Wang P.
    Journal: Biosens Bioelectron; 2010 Jun 15; 25(10):2343-50. PubMed ID: 20418089.
    Abstract:
    Carbon fiber electrodes are greatly promising for microelectronic applications including high performance biosensors, miniaturized transmitters, and energy storage and generation devices. For biosensor applications, one drawback of using carbon fiber microelectrodes, especially single fiber electrodes, is the weak electronic signals, a consequence of low surface area of fibers, which ultimately limit the sensitivity of the sensors. In this paper, we report a novel single fiber microelectrode with branched carbon nanotubes for enhanced sensing performance. The fiber microelectrode was prepared from carbonization of cellulose fibers. Upon introduction of carbon nanotubes, the carbon fibers exhibited a significant increase in the specific surface area from <10 to 36.4 m(2)/g (determined by the BET method). A single fiber electrode with such a hierarchical structure was examined for redox reactions of coenzyme NAD(H) which is useful to mediate the assays and transformations of a broad range of biochemicals. Experimental results showed that carbon nanotubes enhanced the redox reactions on surfaces of the electrode by reducing the oxidation potential of NAD(H) from 0.8 to 0.55 V. The single carbon fiber with branched nanotubes was also examined for the detection of glycerol, and the results showed linear responding signals in a concentration range of 40-250 microM. These results are comparable to the properties of fossil-based carbon materials, and thus our cellulose-based carbon electrodes provide a potentially sustainable alternative in bioelectrochemical applications.
    [Abstract] [Full Text] [Related] [New Search]