These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Author: Cheraghchi H, Esmailzade H.
    Journal: Nanotechnology; 2010 May 21; 21(20):205306. PubMed ID: 20418607.
    Abstract:
    Using the non-equilibrium Green's function formalism, we investigate nonlinear transport and charging effects of gated graphene nanoribbons (GNRs) with an even number of zigzag chains. We find a negative differential resistance (NDR) over a wide range of gate voltages with an on/off ratio approximately 10(6) for narrow enough ribbons. This NDR originates from the parity selection rule and also prohibition of transport between discontinuous energy bands. Since the external field is well screened close to the contacts, the NDR is robust against the electrostatic potential. However, for voltages higher than the NDR threshold, due to charge transfer through the edges of the zigzag GNR (ZGNR), screening is reduced such that the external potential can penetrate inside the ribbon giving rise to smaller values of off-current. Furthermore, the on/off ratio of the current depends on the aspect ratio of the length/width and also edge impurity. Moreover, the on/off ratio displays a power law behavior as a function of ribbon length.
    [Abstract] [Full Text] [Related] [New Search]