These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Author: Goethals O, Vos A, Van Ginderen M, Geluykens P, Smits V, Schols D, Hertogs K, Clayton R. Journal: Virology; 2010 Jul 05; 402(2):338-46. PubMed ID: 20421122. Abstract: Emergence of resistance to raltegravir reduces its treatment efficacy in HIV-1-infected patients. To delineate the effect of resistance mutations on viral susceptibility to integrase inhibitors, in vitro resistance selections with raltegravir and with MK-2048, an integrase inhibitor with a second-generation-like resistance profile, were performed. Mutation Q148R arose in four out of six raltegravir-selected resistant viruses. In addition, mutations Q148K and N155H were selected. In the same time frame, no mutations were selected with MK-2048. Q148H/K/R and N155H conferred resistance to raltegravir, but only minor changes in susceptibility to MK-2048. V54I, a previously unreported mutation, selected with raltegravir, was identified as a possible compensation mutation. Mechanisms by which N155H, Q148H/K/R, Y143R and E92Q confer resistance are proposed based on a structural model of integrase. These data improve the understanding of resistance against raltegravir and cross-resistance to MK-2048 and other integrase inhibitors, which will aid in the discovery of second-generation integrase inhibitors.[Abstract] [Full Text] [Related] [New Search]