These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DBM1285 suppresses tumor necrosis factor alpha production by blocking p38 mitogen-activated protein kinase/mitogen-activated protein kinase-activated protein kinase 2 signaling pathway.
    Author: Kang JS, Kim HM, Choi IY, Han SB, Yoon YD, Lee H, Park KH, Cho IJ, Lee CW, Lee K, Lee KH, Park SK.
    Journal: J Pharmacol Exp Ther; 2010 Aug; 334(2):657-64. PubMed ID: 20427474.
    Abstract:
    Tumor necrosis factor alpha (TNF-alpha) is a major inflammatory cytokine that plays an important role in the development of various inflammatory diseases. TNF-alpha has been considered as a potential therapeutic target for the treatment of chronic inflammatory diseases, including rheumatoid arthritis and inflammatory bowel disease. In this study, we report that cyclopropyl-{4-[4-(4-fluorophenyl)-2-piperidin-4-yl-thiazol-5-yl]pyrimidin-2-yl}amine (DBM1285) is a novel inhibitor of TNF-alpha production. DBM1285 concentration-dependently inhibited lipopolysaccharide (LPS)-induced TNF-alpha secretion in various cells of macrophage/monocyte lineage, including mouse bone marrow macrophages, THP-1 cells, and RAW 264.7 cells. However, LPS-induced mRNA expression of TNF-alpha was not affected by DBM1285 in these cells. Further studies demonstrated that the inhibitory effect of DBM1285 on TNF-alpha production might be mediated by post-transcriptional regulation through the modulation of the p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein kinase 2 (MK2) signaling pathway. We also confirmed that DBM1285 directly inhibits p38 MAPK enzymatic activity. In vivo administration of DBM1285 inhibited LPS-induced increase in the plasma level of TNF-alpha in mice. Whole-blood in vivo target inhibition assay also revealed that DBM1285 attenuates p38 MAPK activity after oral administration in mice. Moreover, DBM1285 suppressed zymosan-induced inflammation and adjuvant-induced arthritis in murine models. Collectively, these results suggest that DBM1285 inhibits TNF-alpha production, at least in part, by blocking the p38 MAPK/MK2 pathway. Furthermore, in vivo results suggest that DBM1285 might be a possible therapeutic candidate for the treatment of TNF-alpha-related chronic inflammatory diseases.
    [Abstract] [Full Text] [Related] [New Search]