These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alteration of left ventricular diastolic function by desflurane, isoflurane, and halothane in the chronically instrumented dog with autonomic nervous system blockade.
    Author: Pagel PS, Kampine JP, Schmeling WT, Warltier DC.
    Journal: Anesthesiology; 1991 Jun; 74(6):1103-14. PubMed ID: 2042762.
    Abstract:
    The effects of the new volatile anesthetic desflurane on three indices of left ventricular diastolic function were examined and compared to those produced by equianesthetic concentrations of isoflurane and halothane. Diastolic function has been shown to significantly influence systolic performance, but the effects of volatile anesthetics on diastolic function have not been extensively examined. Since autonomic nervous system function may significantly influence hemodynamic actions of anesthetics in vivo, experiments were performed in the presence of pharmacologic blockade of the autonomic nervous system. Three groups comprising a total of 23 experiments were performed using 11 dogs instrumented for measurement of aortic and left ventricular pressure, rate of increase of left ventricular pressure (dP/dt), subendocardial segment length, and cardiac output. Systemic hemodynamics were recorded in the conscious state and after 30 min equilibration at 1.0 and 1.5 MAC desflurane, isoflurane, or halothane. Ventricular relaxation was described using invasively derived time constants of isovolumetric relaxation with zero (To) or nonzero (Tn) assumptions of asymptotic decay. Chamber and myocardial stiffness the viscoelastic properties of the ventricle, were described using exponential relationships relating ventricular pressure to segment length and end-diastolic pressure to Lagrangian strain, respectively. Desflurane produced a significant (P less than 0.05) and dose-dependent increase in isovolumetric relaxation as a evaluated by both time constants (To, 22.2 +/- 2.0 during control to 33.9 +/- 3.5 ms at 1.5 MAC; Tn, 33.1 +/- 1.6 during control to 45.1 +/- 4.3 ms at 1.5 MAC). Similar degrees of prolongation of isovolumetric relaxation were produced by isoflurane (Tn, 35.6 +/- 1.5 during control to 47.1 +/- 2.9 ms at 1.5 MAC) and halothane (Tn, 31.7 +/- 2.2 during control to 42.3 +/- 3.9 ms at 1.5 MAC). Halothane also caused an increase in regional passive chamber stiffness (Kp, 0.46 +/- 0.07 during control to 0.88 +/- 0.17 mm-1 at 1.5 MAC) indicating a decrease in ventricular compliance. No changes in chamber stiffness were observed with desflurane or isoflurane. In addition, no significant changes in myocardial stress-strain relationships as evaluated by nonlinear elastic coefficients, alpha (gain) and beta (myocardial stiffness), were observed with any anesthetic. Although the effects of volatile anesthetics on systolic function could not be entirely excluded from the analysis, the results indicated that desflurane, isoflurane, and halothane produce equivalent degrees of prolongation of isovolumetric relaxation. Halothane also caused a decrease in compliance during passive filling as evaluated by chamber stiffness, but no change in compliance was observed at end diastole as assessed by stress-strain relationships.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]