These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transient inverted metastable iron hydroperoxides in fenton chemistry. A nonenzymatic model for cytochrome p450 hydroxylation.
    Author: Bach RD, Dmitrenko O.
    Journal: J Org Chem; 2010 Jun 04; 75(11):3705-14. PubMed ID: 20429613.
    Abstract:
    Quantum mechanical calculations (DFT) have provided a mechanism for the oxidative C-H bond cleavage step in Fenton-like hydrocarbon hydroxylation. A transition structure for hydrocarbon oxidation by aqueous solvated cationic iron(III) hydroperoxides ((H(2)O)(n)Fe(III)OOH) is presented that involves a novel rearrangement of the hydroperoxide group (FeO-OH --> FeO...HO) in concert with hydrogen abstraction by the incipient HO* radical with activation barriers ranging from 17 to 18 kcal/mol. In every hydroperoxide examined, the activation barrier for FeO-OH isomerization, in the absence of the hydrocarbon, is significantly greater than the overall concerted activation barrier for C-H bond cleavage in support of the concept of O-O bond isomerization in concert with hydrogen abstraction. The transition structure for the oxidation step in simple anionic iron(III) hydroperoxides has been shown to bear a remarkable resemblance to model porphyrin calculations on cytochrome P450 hydroxylation.
    [Abstract] [Full Text] [Related] [New Search]