These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite.
    Author: Wang Y, Ma X, Wen Y, Xing Y, Zhang Z, Yang H.
    Journal: Biosens Bioelectron; 2010 Jul 15; 25(11):2442-6. PubMed ID: 20430608.
    Abstract:
    Gold nano-seeds (GNSs) (capital EF, Cyrillic=2-5 nm) were dotted in TiO(2) colloids and the horseradish peroxidase (HRP) was successfully immobilized on the as-made GNSs-TiO(2) nanocomposite by a convenient and effective method. The matrix integrates the merits of both GNSs and TiO(2), which provides a favorable microenvironment for the immobilization of HRP. The cyclic votammetric results demonstrated that the entrapped HRP achieves direct electron transfer at glassy carbon electrode (GCE). A pair of stable and quasi-reversible redox peaks with a small peak-to-peak separation of 43 mV was observed in phosphate buffer solution. The GNSs stabilized by TiO(2) colloids acted sufficiently as the conducting tunnel to promote the electron transfer. As a result, the electrochemical behaviors were improved in virtue of the synergic effect of TiO(2) and GNSs. The Nafion/HRP-GNSs-TiO(2)/GCE displayed an excellent and rapid electrocatalytic response to the reduction of H(2)O(2). The proposed biosensor exhibited a good linear response in the range from 4.1 x 10(-5) to 6.3 x 10(-4) mol L(-1), with a detection limit of 5.9 x 10(-6) mol L(-1) (at the ration of signal to noise, S/N=3). The apparent Michaelis-Menten constant was estimated to be 0.63 mmol L(-1). Furthermore, the biosensor possesses satisfactory stability and good reproducibility.
    [Abstract] [Full Text] [Related] [New Search]