These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis.
    Author: Novarino G, Weinert S, Rickheit G, Jentsch TJ.
    Journal: Science; 2010 Jun 11; 328(5984):1398-401. PubMed ID: 20430975.
    Abstract:
    Loss of the endosomal anion transport protein ClC-5 impairs renal endocytosis and underlies human Dent's disease. ClC-5 is thought to promote endocytosis by facilitating endosomal acidification through the neutralization of proton pump currents. However, ClC-5 is a 2 chloride (Cl-)/proton (H+) exchanger rather than a Cl- channel. We generated mice that carry the uncoupling E211A (unc) mutation that converts ClC-5 into a pure Cl- conductor. Adenosine triphosphate (ATP)-dependent acidification of renal endosomes was reduced in mice in which ClC-5 was knocked out, but normal in Clcn5(unc) mice. However, their proximal tubular endocytosis was also impaired. Thus, endosomal chloride concentration, which is raised by ClC-5 in exchange for protons accumulated by the H+-ATPase, may play a role in endocytosis.
    [Abstract] [Full Text] [Related] [New Search]