These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3D magnetization-prepared imaging using a stack-of-rings trajectory. Author: Wu HH, Nishimura DG. Journal: Magn Reson Med; 2010 May; 63(5):1210-8. PubMed ID: 20432292. Abstract: Efficient acquisition strategies for magnetization-prepared imaging based on the three-dimensional (3D) stack-of-rings k-space trajectory are presented in this work. The 3D stack-of-rings can be acquired with centric ordering in all three dimensions for greater efficiency in capturing the desired contrast. In addition, the 3D stack-of-rings naturally supports spherical coverage in k-space for shorter scan times while achieving isotropic spatial resolution. While non-Cartesian trajectories generally suffer from greater sensitivity to system imperfections, the 3D stack-of-rings can enhance magnetization-prepared imaging with a high degree of robustness to timing delays and off-resonance effects. As demonstrated with phantom scans, timing errors and gradient delays only cause a bulk rotation of the 3D stack-of-rings reconstruction. Furthermore, each ring can be acquired with a time-efficient retracing design to resolve field inhomogeneities and enable fat/water separation. To demonstrate its effectiveness, the 3D stack-of-rings are considered for the case of inversion-recovery-prepared structural brain imaging. Experimental results show that the 3D stack-of-rings can achieve higher signal-to-noise ratio and higher contrast-to-noise ratio within a shorter scan time when compared to the standard inversion-recovery-prepared sequence based on 3D Cartesian encoding. The design principles used for this specific case of inversion-recovery-prepared brain imaging can be applied to other magnetization-prepared imaging applications.[Abstract] [Full Text] [Related] [New Search]