These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst.
    Author: Pelossof G, Tel-Vered R, Elbaz J, Willner I.
    Journal: Anal Chem; 2010 Jun 01; 82(11):4396-402. PubMed ID: 20441165.
    Abstract:
    The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme is assembled on Au electrodes. It reveals bioelectrocatalytic properties and electrocatalyzes the reduction of H(2)O(2). The bioelectrocatalytic functions of the hemin/G-quadruplex DNAzyme are used to develop electrochemical sensors that follow the activity of glucose oxidase and biosensors for the detection of DNA or low-molecular-weight substrates (adenosine monophosphate, AMP). Hairpin nucleic structures that include the G-quadruplex sequence in a caged configuration and the nucleic acid sequence complementary to the analyte DNA, or the aptamer sequence for AMP, are immobilized on Au-electrode surfaces. In the presence of the DNA analyte, or AMP, the hairpin structures are opened, and the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme structures are generated on the electrode surfaces. The bioelectrocatalytic cathodic currents generated by the functionalized electrodes, upon the electrochemical reduction of H(2)O(2), provide a quantitative measure for the detection of the target analytes. The DNA target was analyzed with a detection limit of 1 x 10(-12) M, while the detection limit for analyzing AMP was 1 x 10(-6) M. Methods to regenerate the sensing surfaces are presented.
    [Abstract] [Full Text] [Related] [New Search]