These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Excited-state intramolecular proton transfer on 2-(2'-hydroxy-4'-R-phenyl)benzothiazole nanoparticles and fluorescence wavelength depending on substituent and temperature.
    Author: Kim YH, Roh SG, Jung SD, Chung MA, Kim HK, Cho DW.
    Journal: Photochem Photobiol Sci; 2010 May; 9(5):722-9. PubMed ID: 20442933.
    Abstract:
    The fluorescence emission properties of 2-(2'-hydroxy-4'-R-phenyl)benzothiazole (HBT-R) nanoparticles with different substituents (R = -COOH, -H, -CH(3), -OH, and -OCH(3)) were investigated using spectroscopic and theoretical methods. HBT-Rs displayed dual enol and keto (excited-state intramolecular proton transfer (ESIPT)) emissions in nonpolar solvents. The spectral change of their ESIPT emissions was affected differently by the electron donating (or withdrawing) power of the substituents; a bathochromic shift for the electron donating group and a hypsochromic shift in electron withdrawing group. In addition, the changes in energy levels calculated by the ab initio method were consistent with the spectral shifts of HBT-R in solution. We prepared aggregated HBT-R nanoparticles using a simple reprecipitation process in tetrahydrofuran-water solvents. The ESIPT emission of aggregated HBT-R nanoparticles was strongly enhanced (over 45 times) compared to those of monomer HBT-Rs in toluene, as markedly shifted ESIPT emissions are observed at longer wavelength without any quenching by self-absorption. Aggregated HBT-R nanoparticles showed longer lifetimes than those of monomer molecules. The temperature effect on the aqueous dispersion of the aggregated HBT-R nanoparticles was also explored. It shows a fluorescent ratiometric change in a range of temperature from 7 to 65 degrees C. A mechanism of a temperature-dependent equilibrium between the nanoparticles and the solvated enols is proposed for the emission color change.
    [Abstract] [Full Text] [Related] [New Search]