These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ce0.95Cr0.05O2 and Ce0.97Cu0.03O2: active, selective and stable catalysts for selective hydrogen combustion. Author: Beckers J, Rothenberg G. Journal: Dalton Trans; 2009 Aug 07; (29):5673-82. PubMed ID: 20449080. Abstract: Ceria-based materials are promising solid "oxygen reservoirs" for propane oxidative dehydrogenation. The ceria lattice oxygen can selectively combust hydrogen from the dehydrogenation mixture at 550 degrees C. This shifts the dehydrogenation equilibrium to the desired products side, generates heat aiding the endothermic dehydrogenation, and simplifies product separation. The process is also safer, since it avoids mixing O(2) and H(2) at high temperatures. While ceria itself is unselective, its catalytic properties can be tuned by doping. We study the effects of dopant type, concentration and the crystallite size on the catalytic properties. Doping with Cr or Cu increases both the selectivity and activity of the ceria, albeit that propane combustion also increases linearly with the Cu-concentration. The Cu-doped catalysts give selectivities up to 95% and combust up to 8% of the hydrogen feed. The best results are obtained with Cr-doped ceria, with selectivities up to 98%, and combustion of up to 15% of the hydrogen feed. The Cr-doped catalysts are stable in the reductive gas feed, and no extra coke is formed when the catalyst is subjected to an extra 10 min in the dehydrogenation mixture, after the hydrogen combustion reaction has stopped. This robustness is essential for industrial dehydrogenation applications.[Abstract] [Full Text] [Related] [New Search]