These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Altered epididymal sperm maturation and cytoplasmic droplet migration in subfertile male Alox15 mice.
    Author: Moore K, Lovercamp K, Feng D, Antelman J, Sutovsky M, Manandhar G, van Leyen K, Safranski T, Sutovsky P.
    Journal: Cell Tissue Res; 2010 Jun; 340(3):569-81. PubMed ID: 20449608.
    Abstract:
    Mammalian spermatozoa complete their morphogenesis and acquire their fertilizing potential in the epididymis. Prominent among the hallmarks of epididymal sperm maturation is the proximal-distal migration of the cytoplasmic droplet (CD), the last remnant of the spermatogenic cell cytoplasm, down the sperm flagellum. Failure to shed the CD has been associated with male infertility. Because of the presence of the organelle degradation enzyme 15-lipoxygenase (15LOX) in sperm CD, we hypothesize that subfertile male Alox15 mice lacking the 15Lox gene display sperm CD anomalies. Caput and cauda epididymal sperm samples from seven adult Alox15 and seven wild-type (wt) males of equal age were examined by differential interference contrast microscopy (DIC) and transmission electron microscopy (TEM). Compared with wt males, Alox15 males had significantly more spermatozoa with a retained CD in both caput (P = 0.004) and cauda (P = 0.005) epididymidis. TEM and DIC analyses revealed intact mitochondria present in the CDs of epididymal Alox15 spermatozoa. The CDs of wt spermatozoa, however, had a smooth appearance and contained only hollow membrane vesicles, with no intact mitochondria embedded in their CD matrix. Epithelial lesions, phagocytosis-like figures, and missing or aberrant apical blebs were observed in the caput epididymidis of Alox15 males. Thus, the process of epididymal sperm maturation and CD migration is altered in Alox15 males. Aberrant sperm maturation might contribute to the reduced fertility and smaller litter size of Alox15 mice, a rare example of subfertile mutants displaying normal spermatogenesis but altered epididymal sperm maturation.
    [Abstract] [Full Text] [Related] [New Search]