These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Conversion of the metal-specific activity of Escherichia coli Mn-SOD by site-directed mutagenesis of Gly165Thr. Author: Osawa M, Yamakura F, Mihara M, Okubo Y, Yamada K, Hiraoka BY. Journal: Biochim Biophys Acta; 2010 Sep; 1804(9):1775-9. PubMed ID: 20451673. Abstract: Glycine 165, which is located near the active site metal, is mostly conserved in aligned amino acid sequences of manganese-containing superoxide dismutase (Mn-SOD) proteins, but is substituted to threonine in most iron-containing SODs (Fe-SODs). Because threonine 165 is located between Trp128 and Trp130, and Trp128 is one of the metal-surrounding aromatic amino acids, the conversion of this amino acid may affect the metal-specific activity of Escherichia coli Mn-SOD. In order to clarify this possibility, we prepared a mutant of E. coli Mn-SOD with the replacement of Gly165 by Thr. The ratio of the specific activities of Mn- to Fe-reconstituted enzyme increased from 0.006 in the wild-type to 0.044 in the mutant SOD; therefore, the metal-specific SOD was converted to a metal-tolerant SOD. The visible absorption spectra of the Fe- and Mn-reconstituted mutant SODs indicated the loss of Mn-SOD character. It was concluded that Gly at position 165 plays a catalytic role in maintaining the integrity of the metal specificity of Mn-SOD.[Abstract] [Full Text] [Related] [New Search]