These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A self-stabilizing MSA algorithm in high-dimension data stream.
    Author: Kong X, Hu C, Han C.
    Journal: Neural Netw; 2010 Sep; 23(7):865-71. PubMed ID: 20452742.
    Abstract:
    Minor subspace analysis (MSA) is a statistical method for extracting the subspace spanned by all the eigenvectors associated with the minor eigenvalues of the autocorrelation matrix of a high-dimension vector sequence. In this paper, we propose a self-stabilizing neural network learning algorithm for tracking minor subspace in high-dimension data stream. Dynamics of the proposed algorithm are analyzed via a corresponding deterministic continuous time (DCT) system and stochastic discrete time (SDT) system methods. The proposed algorithm provides an efficient online learning for tracking the MS and can track an orthonormal basis of the MS. Computer simulations are carried out to confirm the theoretical results.
    [Abstract] [Full Text] [Related] [New Search]