These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of genistein and equol on human and rat testicular 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase 3 activities.
    Author: Hu GX, Zhao BH, Chu YH, Zhou HY, Akingbemi BT, Zheng ZQ, Ge RS.
    Journal: Asian J Androl; 2010 Jul; 12(4):519-26. PubMed ID: 20453869.
    Abstract:
    The objective of the present study was to investigate the effects of genistein and equol on 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase 3 (17beta-HSD3) in human and rat testis microsomes. These enzymes (3beta-HSD and 17beta-HSD3), along with two others (cytochrome P450 side-chain cleavage enzyme and cytochrome P450 17alpha-hydroxylase/17-20 lyase), catalyze the reactions that convert the steroid cholesterol into the sex hormone testosterone. Genistein inhibited 3beta-HSD activity (0.2 micromol L(-1) pregnenolone) with half-maximal inhibition or a half-maximal inhibitory concentration (IC(50)) of 87 +/- 15 (human) and 636 +/- 155 nmol L(-1) (rat). Genistein's mode of action on 3beta-HSD activity was competitive for the substrate pregnenolonrge and noncompetitive for the cofactor NAD(+). There was no difference in genistein's potency of 3beta-HSD inhibition between intact rat Leydig cells and testis microsomes. In contrast to its potent inhibition of 3beta-HSD, genistein had lesser effects on human and rat 17beta-HSD3 (0.1 micromol L(-1) androstenedione), with an IC(50) >or= 100 micromol L(-1). On the other hand, equol only inhibited human 3beta-HSD by 42%, and had no effect on 3beta-HSD and 17beta-HSD3 in rat tissues. These observations imply that the ability of soy isoflavones to regulate androgen biosynthesis in Leydig cells is due in part to action on Leydig cell 3beta-HSD activity. Given the increasing intake of soy-based food products and their potential effect on blood androgen levels, these findings are greatly relevant to public health.
    [Abstract] [Full Text] [Related] [New Search]