These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Author: Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, Croner LJ, Wang N, Amatucci A, Michaelson JS, Glaser SM. Journal: Protein Eng Des Sel; 2010 Jul; 23(7):549-57. PubMed ID: 20457695. Abstract: Single-chain Fvs (scFvs) are commonly used building blocks for creating engineered diagnostic and therapeutic antibody molecules. Bispecific antibodies (BsAbs) hold particular interest due to their ability to simultaneously bind and engage two distinct targets. We describe a technology for producing stable, scalable IgG-like bispecific and multivalent antibodies based on methods for rapidly engineering thermally stable scFvs. Focused libraries of mutant scFvs were designed using a combination of sequence-based statistical analyses and structure-, and knowledge-based methods. Libraries encoding these designs were expressed in E. coli and culture supernatants-containing soluble scFvs screened in a high-throughput assay incorporating a thermal challenge prior to an antigen-binding assay. Thermally stable scFvs were identified that retain full antigen-binding affinity. Single mutations were found that increased the measured T(m) of either the V(H) or V(L) domain by as much as 14 degrees C relative to the wild-type scFv. Combinations of mutations further increased the T(m) by as much as an additional 12 degrees C. Introduction of a stability-engineered scFv as part of an IgG-like BsAb enabled scalable production and purification of BsAb with favorable biophysical properties.[Abstract] [Full Text] [Related] [New Search]