These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: XH-stretching overtone transitions calculated using explicitly correlated coupled cluster methods.
    Author: Lane JR, Kjaergaard HG.
    Journal: J Chem Phys; 2010 May 07; 132(17):174304. PubMed ID: 20459166.
    Abstract:
    We have calculated XH-stretching (where X=O, C, F, Cl) fundamental and overtone transitions for three diatomics and a few small molecules using a local mode model. The potential energy curves and dipole moment functions are calculated using the recently developed explicitly correlated coupled cluster with single doubles and perturbative triples theory [CCSD(T)-F12] with the associated VXZ-F12 (where X=D, T, Q) basis sets. We find that the basis set convergence of calculated frequencies and oscillator strengths obtained with the explicitly correlated method is much more rapid than with conventional CCSD(T) and the Dunning type correlation consistent basis sets. Furthermore, CCSD(T)-F12 frequencies and oscillator strengths obtained with the VTZ-F12 and VQZ-F12 basis sets are found to be in excellent agreement with the CCSD(T) complete basis set limit. We find that comparison of CCSD(T)-F12 frequencies with experiment is less good. The inclusion of explicit correlation exposes the inherent error of the CCSD(T) method to overestimate vibrational frequencies, which is normally compensated by basis set incompleteness error. As a consequence, we suggest that conventional CCSD(T) in combination with the aug-cc-pVTZ or aug-cc-pVQZ basis sets is likely to yield calculated XH-stretching frequencies in closest agreement with experiment.
    [Abstract] [Full Text] [Related] [New Search]