These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases.
    Author: Liu PL, Tsai JR, Charles AL, Hwang JJ, Chou SH, Ping YH, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, Chong IW.
    Journal: Mol Nutr Food Res; 2010 Jul; 54 Suppl 2():S196-204. PubMed ID: 20461740.
    Abstract:
    Resveratrol exhibits potential anti-carcinogenic activities. Heme oxygenase-1 (HO-1) is involved in angiogenesis and tumor metastasis. Matrix metalloproteinases (MMPs) are key enzymes in the degradation of extracellular matrix, and their expression may be dysregulated in lung cancer metastasis. In this study, we investigated the anti-invasive mechanism of resveratrol in lung cancer cells. HO-1 was shown to be elevated (approximately 4.7-fold) in lung cancer tumor samples as compared with matched normal tissues. After treatment of lung adenocarcinoma cell line A549 cells with resveratrol (50 microM) for 24 h, the migratory and invasive abilities (38 and 30% inhibition, respectively) of A549 cells were significantly reduced. Resveratrol significantly inhibited HO-1-mediated MMP-9 (35% inhibition) and MMP-2 (28% inhibition) expression in lung cancer cells. Nuclear factor (NF)-kappaB inhibitor induced a marked reduction in MMP-9 and MMP-2 expression, suggesting NF-kappaB pathway could play an important role. Furthermore, HO-1 inhibition and silencing significantly suppressed MMPs and invasion of lung cancer cells. Our results suggest that resveratrol inhibited HO-1 and subsequently MMP-9 and MMP-2 expression in lung cancer cells. The inhibitory effects of resveratrol on MMP expression and invasion of lung cancer cells are, in part, associated with the HO-1-mediated NF-kappaB pathway.
    [Abstract] [Full Text] [Related] [New Search]