These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Re-engineering clostridial neurotoxins for the treatment of chronic pain: current status and future prospects.
    Author: Pickett A.
    Journal: BioDrugs; 2010 Jun; 24(3):173-82. PubMed ID: 20462283.
    Abstract:
    Clostridial neurotoxins from the botulinum neurotoxin (BoNT) family are protein complexes, derived from the bacterium Clostridium botulinum, which potently inhibit acetylcholine release and result in a reversible blockade of the neuromuscular junction. This feature led to the clinical development of BoNT-A for a number of neuromuscular disorders. BoNT-A toxins are commercially available as three different preparations: Dysport/Azzalure, Botox/Vistabel, and Xeomin/Bocouture. Although BoNT-A preparations have not yet been approved for the treatment of pain, a substantial body of preclinical and clinical evidence shows that BoNT-A is effective in treating a number of different types of pain. It is thought to exert an analgesic effect both via muscle-relaxant properties and also directly, via inhibition of nociceptive neuropeptides. This review explores the mechanistic basis of this analgesic effect, summarizing current knowledge of the structure-function relationship of BoNT and discussing effects on both motor and pain neurons. For a complete picture of the analgesic properties of BoNT-A, clinical evidence of efficacy in myofascial pain and neuropathic pain is considered in tandem with a mechanistic rationale for activity. Patients experiencing chronic pain are clear candidates for treatment with a modified clostridial endopeptidase that would provide enduring inhibition of neurotransmitter release. A strong preclinical evidence base underpins the concept that re-engineering of BoNT could be used to enhance the analgesic potential of this neurotoxin, and it is hoped that the first clinical studies examining re-engineered BoNT-A will confirm this potential.
    [Abstract] [Full Text] [Related] [New Search]