These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of phospholipase A2 by 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine in vitro.
    Author: Code C, Mahalka AK, Bry K, Kinnunen PK.
    Journal: Biochim Biophys Acta; 2010 Aug; 1798(8):1593-600. PubMed ID: 20462500.
    Abstract:
    Oxidative stress leads to drastic modifications of both the biophysical properties of biomembranes and their associated chemistry imparted upon the formation of oxidatively modified lipids. To this end, oxidized phospholipid derivatives bearing an aldehyde function, such as 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) can covalently react with proteins that come into direct contact. Intriguingly, we observed PoxnoPC in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) matrix to shorten and abolish the lag time in the action of phospholipase A2 (PLA2) on this composite substrate, with concomitant augmented decrement in pH, indicating more extensive hydrolysis, which was in keeping with enhanced 90 degrees light scattering. The latter was abolished by the aldehyde scavenger methoxyamine, thus suggesting the involvement of Schiff base. Enhanced hydrolysis of a fluorescent phospholipid analogue was seen for PLA2 preincubated with PoxnoPC. Mixing PLA2 with submicellar (22 microM) PoxnoPC caused a pronounced increase in Thioflavin T fluorescence, in keeping with the formation of amyloid-type fibers, which were seen also by electron microscopy.
    [Abstract] [Full Text] [Related] [New Search]