These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MJ-29 inhibits tubulin polymerization, induces mitotic arrest, and triggers apoptosis via cyclin-dependent kinase 1-mediated Bcl-2 phosphorylation in human leukemia U937 cells.
    Author: Yang JS, Hour MJ, Huang WW, Lin KL, Kuo SC, Chung JG.
    Journal: J Pharmacol Exp Ther; 2010 Aug; 334(2):477-88. PubMed ID: 20463006.
    Abstract:
    We investigated the signaling pathways associated with microtubule interaction and apoptosis in U937 cells in vitro and in the U937 xenograft model in vivo by using 6-pyrrolidinyl-2-(2-hydroxyphenyl)-4-quinazolinone (MJ-29). MJ-29 induced growth inhibition and cell death of leukemia cell lines (U937, HL-60, K562, and KG-1) in a dose- and time-dependent manner but did not obviously impair the viability of normal cells (peripheral blood mononuclear cells and human umbilical vein endothelial cells). MJ-29 interacted with alpha- and beta-tubulin, inhibited tubulin polymerization both in vitro and in vivo, and disrupted microtubule organization. MJ-29 caused mitotic arrest by activating cyclin-dependent kinase 1 (CDK1)/cyclin B complex activity. MJ-29-induced growth inhibition and activation of CDK1 activity were significantly attenuated by roscovitine (CDK inhibitor) and CDK1 small interfering RNA (siRNA). Furthermore, MJ-29-induced Bcl-2 phosphorylation was also significantly attenuated by CDK1 siRNA. MJ-29 caused an increase in the protein levels of cytosolic cytochrome c, apoptotic protease-activating factor-1, procaspase-9, and apoptosis-inducing factor. MJ-29-promoted activation of caspase-9 and caspase-3 during apoptosis was significantly attenuated by caspase-9 and caspase-3 inhibitors. It is noteworthy that in BALB/c(nu/nu) mice bearing U937 xenograft tumors MJ-29 inhibited tumor growth in vivo. The terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling-positive apoptotic cells of tumor sections significantly increased in MJ-29-treated mice compared with the control group. In conclusion, our results suggest that MJ-29 induces mitotic arrest and apoptosis in U937 cells via CDK1-mediated Bcl-2 phosphorylation and inhibits the in vivo tumor growth of U937 xenograft mice.
    [Abstract] [Full Text] [Related] [New Search]