These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myoglobin redox form stabilization by compartmentalized lactate and malate dehydrogenases. Author: Mohan A, Hunt MC, Muthukrishnan S, Barstow TJ, Houser TA. Journal: J Agric Food Chem; 2010 Jun 09; 58(11):7021-9. PubMed ID: 20465309. Abstract: The purpose of this study was to assess the ability of mitochondrial and cytoplasmic malate dehydrogenase present in postrigor bovine skeletal muscle to use malate as a substrate for reduced nicotinamide adenine dinucleotide (NADH) regeneration and metmyoglobin (MMb) reduction via the malate-NAD(+)-MMb system. Furthermore, addition of lactate to beef mitochondrial and cytoplasmic isolates was evaluated to determine whether interactions between malate and lactate increased MMb reduction. Addition of malate to isolated beef mitochondrial and cytoplasmic isolates at pH 7.2 increased (p < 0.05) MMb reduction. MMb reduction resulting from addition of malate and lactate was equal to or greater than MMb reduction resulting from malate alone. This suggests that a combination of mitochondrial (malate) and cytoplasmic (lactate) factors can be used to regenerate the post-mortem pool of NADH, resulting in metmyoglobin reduction and meat color stabilization.[Abstract] [Full Text] [Related] [New Search]