These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A level set formulation of geodesic curvature flow on simplicial surfaces. Author: Wu C, Tai X. Journal: IEEE Trans Vis Comput Graph; 2010; 16(4):647-62. PubMed ID: 20467062. Abstract: Curvature flow (planar geometric heat flow) has been extensively applied to image processing, computer vision, and material science. To extend the numerical schemes and algorithms of this flow on surfaces is very significant for corresponding motions of curves and images defined on surfaces. In this work, we are interested in the geodesic curvature flow over triangulated surfaces using a level set formulation. First, we present the geodesic curvature flow equation on general smooth manifolds based on an energy minimization of curves. The equation is then discretized by a semi-implicit finite volume method (FVM). For convenience of description, we call the discretized geodesic curvature flow as dGCF. The existence and uniqueness of dGCF are discussed. The regularization behavior of dGCF is also studied. Finally, we apply our dGCF to three problems: the closed-curve evolution on manifolds, the discrete scale-space construction, and the edge detection of images painted on triangulated surfaces. Our method works for compact triangular meshes of arbitrary geometry and topology, as long as there are no degenerate triangles. The implementation of the method is also simple.[Abstract] [Full Text] [Related] [New Search]