These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pain is a salient "stressor" that is mediated by corticotropin-releasing factor-1 receptors. Author: Hummel M, Cummons T, Lu P, Mark L, Harrison JE, Kennedy JD, Whiteside GT. Journal: Neuropharmacology; 2010 Sep; 59(3):160-6. PubMed ID: 20470804. Abstract: Corticotropin-releasing factor (CRF) plays a major role in controlling the body's response to stress. Because painful conditions are inherently stressful, we hypothesize that CRF may act via CRF-1 receptors to contribute to the pain experience. Studies were designed to investigate whether blocking CRF-1 receptors with selective antagonists or reducing their expression with CRF-Saporin, would attenuate ulcer, inflammatory- and neuropathic-like pain. Five experimental designs were undertaken. In experiment 1, ulcer pain was induced in mice following oral administration of indomethacin, while in experiments 2 and 3, inflammatory pain was induced in rats with either carrageenan or FCA, respectively. For these studies, animals were dosed with CP-154,526 (3, 10, 30 mg/kg) and NBI 27914 (1-30 mg/kg) 1 h prior to the assessment of tactile, thermal or mechanical hypersensitivity, respectively. In experiment 4, neuropathic pain was induced. Twenty-one days following spinal nerve ligation (SNL), animals received CRF-Saporin or control. Three weeks later tactile allodynia was assessed. Similarly, in experiment 5, a separate set of rats received CRF-Saporin or control. Twenty-one days later, mechanical hyperalgesia was assessed following intraplantar carrageenan. Results from the antagonist studies showed that CP-154,526 and NBI 27914 either fully or partially reversed the referred ulcer pain with minimal effective doses (MED) equal to 3 and 10 mg/kg, respectively. Similarly, both NBI 27914 and CP-154,526 reversed the thermal and mechanical hypersensitivity elicited by carrageenan and FCA with MEDs </= 5 and 10 mg/kg, respectively. Findings from the two CRF-Saporin studies determined that pre-treatment with this toxin significantly attenuated SNL- and carrageenan-induced tactile hypersensitivity. Together, these findings suggest that CRF-1 receptors mediate pain and implicate CRF in this regard.[Abstract] [Full Text] [Related] [New Search]