These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insects running on elastic surfaces.
    Author: Spence AJ, Revzen S, Seipel J, Mullens C, Full RJ.
    Journal: J Exp Biol; 2010 Jun 01; 213(11):1907-20. PubMed ID: 20472778.
    Abstract:
    In nature, cockroaches run rapidly over complex terrain such as leaf litter. These substrates are rarely rigid, and are frequently very compliant. Whether and how compliant surfaces change the dynamics of rapid insect locomotion has not been investigated to date largely due to experimental limitations. We tested the hypothesis that a running insect can maintain average forward speed over an extremely soft elastic surface (10 N m(-1)) equal to 2/3 of its virtual leg stiffness (15 N m(-1)). Cockroaches Blaberus discoidalis were able to maintain forward speed (mean +/- s.e.m., 37.2+/-0.6 cm s(-1) rigid surface versus 38.0+/-0.7 cm s(-1) elastic surface; repeated-measures ANOVA, P=0.45). Step frequency was unchanged (24.5+/-0.6 steps s(-1) rigid surface versus 24.7+/-0.4 steps s(-1) elastic surface; P=0.54). To uncover the mechanism, we measured the animal's centre of mass (COM) dynamics using a novel accelerometer backpack, attached very near the COM. Vertical acceleration of the COM on the elastic surface had a smaller peak-to-peak amplitude (11.50+/-0.33 m s(-2), rigid versus 7.7+/-0.14 m s(-2), elastic; P=0.04). The observed change in COM acceleration over an elastic surface required no change in effective stiffness when duty factor and ground stiffness were taken into account. Lowering of the COM towards the elastic surface caused the swing legs to land earlier, increasing the period of double support. A feedforward control model was consistent with the experimental results and provided one plausible, simple explanation of the mechanism.
    [Abstract] [Full Text] [Related] [New Search]