These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparable attenuation of Abeta(25-35)-induced neurotoxicity by quercitrin and 17beta-estradiol in cultured rat hippocampal neurons.
    Author: Rattanajarasroj S, Unchern S.
    Journal: Neurochem Res; 2010 Aug; 35(8):1196-205. PubMed ID: 20473637.
    Abstract:
    In the present work, potential protective effects of quercitrin (a phytoestrogen) on Abeta-induced neurotoxicity in cultured rat hippocampal neurons were investigated in comparison with 17beta-estradiol. Cell viability, oxidative status, and antioxidative potentials were used as comparative parameters. Co-exposure of cultured neurons to Abeta(25-35) with either quercitrin or 17beta-estradiol (50-100 microM) for 72 h attenuated Abeta(25-35)-induced neurotoxicity and lipid peroxidation, but not Abeta(25-35)-induced ROS accumulation. However, only 17beta-estradiol counteracted a reduction in glutathione content and only quercitrin counteracted a reduction in glutathione peroxidase activity. Both compounds displayed no effects on superoxide dismutase activity. A specific estrogen receptor antagonist, ICI 182780, did not abolish neuroprotective effects of quercitrin and 17beta-estradiol. These findings suggested that quercitrin and 17beta-estradiol attenuated Abeta(25-35)-induced neurotoxicity in a comparable manner. Underlying neuroprotective mechanisms of both compounds were probably not related to estrogen receptor-mediated genomic mechanisms but might involve with their antioxidant and free radical scavenging properties.
    [Abstract] [Full Text] [Related] [New Search]