These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of basic protein from human central nervous system myelin on lipid bilayer structure. Author: Boggs JM, Moscarello MA. Journal: J Membr Biol; 1978 Feb 06; 39(1):75-96. PubMed ID: 204786. Abstract: The effect of myelin basic protein from normal human central nervous system on lipid organization has been investigated by studying model membranes containing the protein by differential scanning calorimetry or electron spin resonance spectroscopy. Basic protein was found to decrease the phase transition temperature of dipalmitoyl phosphatidylglycerol, phosphatidic acid, and phosphatidylserine. The protein had a greater effect on the freezing temperature, measured from the cooling scan, than on the melting temperature, measured from the heating scan. These results are consistent with partial penetration of parts of the protein into the hydrocarbon region of the bilayer in the liquid crystalline state and partial freezing out when the lipid has been cooled below its phase transition temperature. The effect of the protein on fatty acid chain packing was investigated by using a series of fatty acid spin labels with the nitroxide group located at different positions along the chain. If the protein has not yet penetrated, it increases the order throughout the bilayer in the gel phase, probably by decreasing the repulsion between the lipid polar head groups. Above the phase transition temperature, when parts of it are able to pentrate, it decreases the motion of the lipid fatty acid chains greatly near the polar head group region, but has little or no effect near the interior of the bilayer. Upon cooling again the protein still decreases the motion near the polar head group region but increases it greatly in the interior. Thus, the protein penetrates partway into the bilayer, distorts the packing of the lipid fatty acid chains, and prevents recrystallization, thus decreasing the phase transition temperature. The magnitude of the effect varied with the lipid and was greatest for phosphatidic acid and phosphatidylglycerol. It could be reversed upon cooling for phosphatidylglycerol but not phosphatidic acid. The protein was only observed to decrease the phase transition temperature of phosphatidylserine upon cooling. It had only a small effect on phosphatidylethanolamine and no effect on phosphatidylcholine. Thus, the protein may penetrate to a different extent into different lipids even if it binds to the polar head group region by electrostatic interactions.[Abstract] [Full Text] [Related] [New Search]