These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deposition and aggregation kinetics of rotavirus in divalent cation solutions. Author: Gutierrez L, Mylon SE, Nash B, Nguyen TH. Journal: Environ Sci Technol; 2010 Jun 15; 44(12):4552-7. PubMed ID: 20481597. Abstract: Aggregation kinetics of rotavirus in aqueous solutions and its deposition kinetics on silica surface in the presence of divalent (Ca(2+), Mg(2+)) cations were studied using complementary techniques of time-resolved dynamic light scattering (TR-DLS) and quartz crystal microbalance (QCM). Within a reasonable temporal window of 4 h, aggregation could be observed at levels as low as 10 mM of Ca(2+) and 20 mM of Mg(2+). Attachment efficiencies were always greater in Ca(2+) solutions of the same concentration, and the critical coagulation concentration (CCC) for rotavirus in Ca(2+) solutions was slightly smaller than that in Mg(2+) solutions. No aggregation was detected in Na(+) solution within the temporal window of 4 h. Deposition experiments showed higher attachment coefficients in solutions containing Ca(2+) compared to those obtained in Mg(2+) solution. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory failed to predict both the aggregation behavior of rotavirus and its deposition on silica surface. Besides electrostatic interactions, steric repulsions and specific interactions with divalent cations were important mechanisms in controlling rotavirus deposition and aggregation. Experimental results presented here suggest that rotavirus is not expected to aggregate in groundwater with typical hardness (up to 6 mM Ca(2+)) and rotavirus deposition on silica soil would be more favorable in the presence of Ca(2+) than Mg(2+).[Abstract] [Full Text] [Related] [New Search]