These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle.
    Author: Jacob ME, Fox JT, Nagaraja TG, Drouillard JS, Amachawadi RG, Narayanan SK.
    Journal: Foodborne Pathog Dis; 2010 Jun; 7(6):643-8. PubMed ID: 20482227.
    Abstract:
    Cattle are fed elevated concentrations of copper and zinc for growth promotion. The potential mechanisms of growth promotional effects of these elements are attributed to their antimicrobial activities, similar to that of antibiotics, in that gut microbial flora are altered to reduce fermentation loss of nutrients and to suppress gut pathogens. Copper and zinc fed at elevated concentrations may select for bacteria that are resistant not only to heavy metals but also to antibiotics. Our objectives were to determine the effects of feeding elevated copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Twenty heifers, fed corn-based high-grain diets, were randomly assigned to treatments in a 2 x 2 factorial arrangement with 1X or 10X National Research Council recommended copper and/or zinc. Feces, collected on days 0, 14, and 32, were cultured for commensal bacteria (Escherichia coli and Enterococcus) to determine their susceptibilities to copper, zinc, and antibiotics. Fecal DNA was extracted to detect tcrB gene and quantify erm(B) and tet(M) genes. In E. coli and Enterococcus sp., minimal differences in minimum inhibitory concentrations (MICs) of copper, zinc, and antibiotics were noticed. The mean copper MIC for E. coli increased (p < 0.05) between days 0 and 32 and days 14 and 32. The only treatment effect detected was increased zinc MIC of E. coli isolates (p < 0.01). The tcrB gene was not detected in feces or in enterococcal isolates. Proportions of erm(B) and tet(M) were unaffected by copper or zinc supplementation. However, the proportion of tet(M) increased (p < 0.05) between days 0 and 14. Feeding elevated copper and/or zinc to feedlot cattle had marginal effects on antimicrobial susceptibilities of fecal E. coli and enterococci.
    [Abstract] [Full Text] [Related] [New Search]