These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications.
    Author: Shruthi H, Anand P, Murugan V, Sankaran K.
    Journal: Mol Biosyst; 2010 Jun; 6(6):999-1007. PubMed ID: 20485744.
    Abstract:
    Bacterial lipoproteins, an important class of membrane proteins, are generally thought to be translocated in an unfolded state by the well-studied Sec machinery, whereas the role of TAT, meant for folded proteins, is hardly investigated. Using appropriately engineered fast-folding Enhanced Green Fluorescence Protein (EGFP), as a model, here we show that TAT is essential for not only translocating fast-folding lipoprotein but also its lipid modification. EGFP was lipid-modified and targeted to the outer membrane's outer surface with a prototypical TAT signal sequence containing lipobox but not with the lipoprotein or TAT signal sequence. Justifiably signal sequences of many substrate-binding and co-factor-containing lipoproteins contained both TAT-box and lipobox (Shruthi et al., submitted). Cytoplasmic accumulation of unmodified precursors of engineered EGFP in a tatC mutant implicated this TAT-box-recognizing component in lipid-modification. Similar observations reported earlier with Sec components and murein lipoprotein led us to propose that the translocation-competent and translocase-associated (Sec or TAT) precursor form is prerequisite to initiation of lipid-modification in vivo. The above missing links between translocation and lipid modification machineries in vivo is important to our understanding of bacterial lipoprotein biosynthesis and its utility as a protein engineering tool for potent applications in synthetic biology and nanobiotechnology like display, arrays on bacterial surfaces, vaccines and biosensors.
    [Abstract] [Full Text] [Related] [New Search]