These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A comparison of fluoroalkyl-derivatized imidazolium:TFSI and alkyl-derivatized imidazolium:TFSI ionic liquids: a molecular dynamics simulation study.
    Author: Smith GD, Borodin O, Magda JJ, Boyd RH, Wang Y, Bara JE, Miller S, Gin DL, Noble RD.
    Journal: Phys Chem Chem Phys; 2010 Jul 14; 12(26):7064-76. PubMed ID: 20485804.
    Abstract:
    Molecular dynamics simulations of fluoroalkyl-derivatized imidazolium:bis(trifluoromethylsulfonyl)imide (TFSI) room temperature ionic liquids (FADI-RTILs) with cations of the structure 1-F(CF(2))(n)(CH(2))(2)-3-methyl imidazolium have been performed and compared with simulations of alkyl-derivatized 1-H(CH(2))(n+2)-3-methyl imidazolium analogs (ADI-RTILs). Simulations yield RTIL densities, viscosities and ionic conductivities for the FADI-RTILs and ADI-RTILs in reasonably good agreement with experimental data. Partial fluorination results in a larger increase in density than would be anticipated based upon the density difference between perfluoralkane and alkane melts. Similarly, the slowing down in dynamics upon partial fluorination is greater than would be expected based upon the increase in cation volume. Examination of cation-cation, anion-anion and cation-anion centers-of-mass radial distribution functions reveal remarkably little influence of partial fluorination on the spherically averaged intermolecular structure of the RTILs. Similarly, simulations reveal little change in tail conformations and the extent of tail-tail aggregation upon partial fluorination. The interaction of the TFSI anion with the positively charged imidazolium ring hydrogen and nitrogen atoms is also little influenced by partial fluorination. However, the partially fluorinated alkyl tail exhibits increased interaction with the TFSI anion due to the electron withdrawing character of the fluorinated groups. We believe this strong tail-anion electrostatic interaction largely accounts for the higher than expected density and slower than expected dynamics in the FADI-RTILs.
    [Abstract] [Full Text] [Related] [New Search]