These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Solid-state nitrogen-14 nuclear magnetic resonance enhanced by dynamic nuclear polarization using a gyrotron. Author: Vitzthum V, Caporini MA, Bodenhausen G. Journal: J Magn Reson; 2010 Jul; 205(1):177-9. PubMed ID: 20488737. Abstract: By combining indirect detection of 14N with dynamic nuclear polarization (DNP) using a gyrotron, the signal-to-noise ratio can be dramatically improved and the recovery delay between subsequent experiments can be shortened. Spectra of glassy samples of the amino acid proline doped with the stable bi-radical TOTAPOL rotating at 15.625 kHz at 110K were obtained in a 400 MHz solid-state NMR spectrometer equipped with a gyrotron for microwave irradiation at 263 GHz. DNP enhancement factors on the order of epsilon approximately 40 were achieved. The recovery delays can be reduced from 60 s without radicals at 300 K to 6 s with radicals at 110 K. In the absence of radicals at room temperature, the proton relaxation in proline is inefficient due to the absence of rotating methyl groups and other heat sinks, thus making long recovery delays mandatory. DNP allows one to reduce the acquisition times of 13C-detected 14N spectra from several days to a few hours.[Abstract] [Full Text] [Related] [New Search]