These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats. Author: Benton CR, Holloway GP, Han XX, Yoshida Y, Snook LA, Lally J, Glatz JF, Luiken JJ, Chabowski A, Bonen A. Journal: Diabetologia; 2010 Sep; 53(9):2008-19. PubMed ID: 20490453. Abstract: AIMS/HYPOTHESIS: Reductions in peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1alpha) levels have been associated with the skeletal muscle insulin resistance. However, in vivo, the therapeutic potential of PGC-1alpha has met with failure, as supra-physiological overexpression of PGC-1alpha induced insulin resistance, due to fatty acid translocase (FAT)-mediated lipid accumulation. Based on physiological and metabolic considerations, we hypothesised that a modest increase in PGC-1alpha levels would limit FAT upregulation and improve lipid metabolism and insulin sensitivity, although these effects may differ in lean and insulin-resistant muscle. METHODS: Pgc-1alpha was transfected into lean and obese Zucker rat muscles. Two weeks later we examined mitochondrial biogenesis, intramuscular lipids (triacylglycerol, diacylglycerol, ceramide), GLUT4 and FAT levels, insulin-stimulated glucose transport and signalling protein phosphorylation (thymoma viral proto-oncogene 2 [Akt2], Akt substrate of 160 kDa [AS160]), and fatty acid oxidation in subsarcolemmal and intermyofibrillar mitochondria. RESULTS: Electrotransfection yielded physiologically relevant increases in Pgc-1alpha (also known as Ppargc1a) mRNA and protein ( approximately 25%) in lean and obese muscle. This induced mitochondrial biogenesis, and increased FAT and GLUT4 levels, insulin-stimulated glucose transport, and Akt2 and AS160 phosphorylation in lean and obese animals, while bioactive intramuscular lipids were only reduced in obese muscle. Concurrently, PGC-1alpha increased palmitate oxidation in subsarcolemmal, but not in intermyofibrillar mitochondria, in both groups. In obese compared with lean animals, the PGC-1alpha-induced improvement in insulin-stimulated glucose transport was smaller, but intramuscular lipid reduction was greater. CONCLUSIONS/INTERPRETATIONS: Increases in PGC-1alpha levels, similar to those that can be induced by physiological stimuli, altered intramuscular lipids and improved fatty acid oxidation, insulin signalling and insulin-stimulated glucose transport, albeit to different extents in lean and insulin-resistant muscle. These positive effects are probably attributable to limiting the PGC-1alpha-induced increase in FAT, thereby preventing bioactive lipid accumulation as has occurred in transgenic PGC-1alpha animals.[Abstract] [Full Text] [Related] [New Search]