These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts.
    Author: Durner J, Dębiak M, Bürkle A, Hickel R, Reichl FX.
    Journal: Arch Toxicol; 2011 Feb; 85(2):143-8. PubMed ID: 20490463.
    Abstract:
    The toxicity of dental composites has been attributed to the release of residual monomers from polymerized resin-based composites due to degradation processes or incomplete polymerization. Some of these eluted substances have a genotoxic potential. We tested the hypothesis that realistic concentrations (and/or worst case concentrations/situations) of bisphenol-A-glycidyldimethacrylate (BisGMA), triethyleneglycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) found in elution experiments can cause DNA strand breaks in human gingival fibroblasts (HGF). Such DNA damage was compared with that resulting from ionizing radiation coming from natural sources, dental radiography or tumor therapy. TEGDMA, HEMA and MMA did not induce DNA strand breaks at concentrations of up to 10 mM. About 24 h after incubation with 0.25 mM BisGMA, significantly more DNA strand breaks were found in HGF compared to controls. DNA strand breaks caused by 0.25 mM BisGMA, correspond to DNA strand breakage caused by irradiation with 4 Gy, only used in the high single-dose irradiation tumor therapy. But 0.25 mM BisGMA is more than 100-fold higher than that concentration found in worst case calculations. Therefore, our data did not support our hypothesis.
    [Abstract] [Full Text] [Related] [New Search]