These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The design of in vitro liver sinusoid mimics using chitosan-hyaluronic acid polyelectrolyte multilayers. Author: Kim Y, Larkin AL, Davis RM, Rajagopalan P. Journal: Tissue Eng Part A; 2010 Sep; 16(9):2731-41. PubMed ID: 20491586. Abstract: Interactions between hepatocytes and liver sinusoidal endothelial cells (LSECs) are essential for the development and maintenance of hepatic phenotypic functions. We report the assembly of three-dimensional liver sinusoidal mimics comprised of primary rat hepatocytes, LSECs, and an intermediate chitosan-hyaluronic acid polyelectrolyte multilayer (PEM). The height of the PEMs ranged from 30 to 55 nm and exhibited a shear modulus of approximately 100 kPa. Hepatocyte-PEM cellular constructs exhibited stable urea and albumin production over a 7-day period, and these values were either higher or similar to cells cultured in a collagen sandwich. This is of significance because the thickness of a collagen gel is approximately 1000-fold higher than the height of the chitosan-hyaluronic acid PEM. In the hepatocyte-PEM-LSEC liver-mimetic cellular constructs, LSEC phenotype was maintained, and these cultures exhibited stable urea and albumin production. CYP1A1/2 activity measured over a 7-day period was significantly higher in the hepatocyte-PEM-LSEC constructs than in collagen sandwich cultures. A 16-fold increase in CYP1A1/2 activity was observed for hepatocyte-PEM-10,000 LSEC samples, thereby suggesting that interactions between hepatocytes and LSECs are critical in enhancing the detoxification capability in hepatic cultures in vitro.[Abstract] [Full Text] [Related] [New Search]