These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A biomechanical analysis of locking plate fixation with minimally invasive plate osteosynthesis in a subtrochanteric fracture model.
    Author: Kim JW, Oh CW, Byun YS, Oh JK, Kim HJ, Min WK, Park SK, Park BC.
    Journal: J Trauma; 2011 Jan; 70(1):E19-23. PubMed ID: 20495493.
    Abstract:
    OBJECTIVE: The objective of this study was to establish the relative fixation strengths of a locking plate, a dynamic condylar screw (DCS) plate, and a long proximal femoral nail (PFN). METHODS: The study involved three groups of composite large femoral synthetic bones of five specimens per group; plating using a locking compression plate-distal femur (LCP-DF), plating using a DCS plate, and nailing using a long PFN. A gap osteotomy model was used to simulate a comminuted subtrochanteric femur fracture. For each femur, a minimal preload of 100 N was applied before loading to failure. A vertical load was applied at 10 mm/min until femur failure. Load to failure, mode of failure, and displacement at load to failure were documented. RESULTS: Fixation strength (load or moment to failure) of LCP-DF (1,330 N; range, 1,217-1,460 N) was 26.6% and was greater in axial loading compared with DCS (1050.5 N; range, 956.4-1194.5 N) and 250% less in axial loading compared with long PFN (3633.1 N; range, 3337.2-4020.4 N; p=0.002). Ultimate displacement in axial loading was similar for LCP-DF (18.4 mm; standard deviation [SD], 1.44), DCS (18.3 mm; SD, 3.25), and long PFN (16.7 mm; SD, 1.82). CONCLUSIONS: The LCP-DF construct proved stronger than the DCS in terms of ultimate strength by biomechanical testing of a simulated subtrochanteric femur fracture with comminution. Although the nail construct proved strongest, the biomechanical performance of the locking plate construct may lend credence to the use of a locking plate versus the DCS plate for minimally invasive plate osteosynthesis of subtrochanteric femur fractures, which may be technically difficult to fix using a nail.
    [Abstract] [Full Text] [Related] [New Search]