These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient gene transfection by histidine-modified chitosan through enhancement of endosomal escape. Author: Chang KL, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Journal: Bioconjug Chem; 2010 Jun 16; 21(6):1087-95. PubMed ID: 20499901. Abstract: Chitosan has the potential to be a biocompatible gene carrier. However, the transfection efficiency of chitosan is low because of the slow endosomal escape rate. The buffering capacity of histidine in the endosomal pH range would help the escape of plasmid DNA (pDNA) from endosomes. In this study, histidine was introduced into chitosan to improve the transfection efficiency. Chitosan and histidine were linked by disulfide bonds provided by 2-iminothiolane and cysteine. The complexes were prepared by mixing chitosan or histidine-modified chitosan with plasmid DNA. A broader buffering range of histidine-modified chitosan was observed, and the cellular uptake of histidine-modified chitosan/pDNA complexes was higher than that of chitosan/pDNA complexes. Although chitosan/tetramethylrhodamine (TMR)-pDNA complexes were trapped in the vesicles in cytosol, TMR-pDNA carried by histidine-modified chitosan was more widely distributed in the cytosol. This result suggests that histidine can help pDNA escape from endosomes with the help of the high buffering capacity. The gene expression of histidine-modified chitosan/pDNA complexes was higher than that of chitosan/pDNA complexes. These results suggest that histidine modification improves the transfection efficiency of chitosan.[Abstract] [Full Text] [Related] [New Search]