These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Approximating stochastic biochemical processes with Wasserstein pseudometrics. Author: Thorsley D, Klavins E. Journal: IET Syst Biol; 2010 May; 4(3):193-211. PubMed ID: 20500000. Abstract: Modelling stochastic processes inside the cell is difficult due to the size and complexity of the processes being investigated. As a result, new approaches are needed to address the problems of model reduction, parameter estimation, model comparison and model invalidation. Here, the authors propose addressing these problems by using Wasserstein pseudometrics to quantify the differences between processes. The method the authors propose is applicable to any bounded continuous-time stochastic process and pseudometrics between processes are defined only in terms of the available outputs. Algorithms for approximating Wasserstein pseudometrics are developed from experimental or simulation data and demonstrate how to optimise parameter values to minimise the pseudometrics. The approach is illustrated with studies of a stochastic toggle switch and of stochastic gene expression in E. coli.[Abstract] [Full Text] [Related] [New Search]