These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Parsing apical oxalate exchange in Caco-2BBe1 monolayers: siRNA knockdown of SLC26A6 reveals the role and properties of PAT-1.
    Author: Freel RW, Morozumi M, Hatch M.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2009 Nov; 297(5):G918-29. PubMed ID: 20501439.
    Abstract:
    The purpose of this investigation was to quantitate the contribution of the anion exchanger PAT-1 (putative anion transporter-1), encoded by SLC26A6, to oxalate transport in a model intestinal epithelium and to discern some characteristics of this exchanger expressed in its native environment. Control (Con) Caco-2 BBe1 monolayers, 6-8 days postseeding, were compared with those transfected with a small interfering RNA targeted to SLC26A6 (A6KD). Radiotracer and Ussing chamber techniques were used to determine the transepithelial unidirectional fluxes of Ox(2-), Cl(-), and SO(4)(2-) whereas fluorometric/BCECF measurements of intracellular pH were used to assess HCO(3)(-) exchange. PAT-1 was functionally targeted to the apical membrane, and SLC26A6 knockdown reduced PAT-1 protein (>60%) and mRNA (>75%) expression in A6KD. No net flux of Ox(2-), Cl(-), or SO(4)(2-) was detected in Con or A6KD monolayers, yet the unidirectional fluxes in A6KD were reduced 50, 35, and 15%, respectively. Cl(-)-dependent HCO(3)(-) efflux from A6KD was reduced 50% compared with Con. The difference between Con and A6KD properties represents that mediated solely by PAT-1, and by this approach we found that PAT-1-mediated oxalate influx and efflux are inhibited equally by mucosal DIDS (EC(50) approximately 5 microM) and that mucosal Cl(-) inhibits oxalate uptake with an EC(50) < 20 mM. Transepithelial Cl(-) gradients supported large, DIDS-sensitive net absorptive or secretory fluxes of oxalate in a direction opposite that of the imposed Cl(-) gradient. The overall symmetry of PAT-1-mediated oxalate exchange suggests that vectorial oxalate transport observed in vivo is principally dependent on the magnitude and direction of counterion gradients.
    [Abstract] [Full Text] [Related] [New Search]