These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Red-edge-wavelength finely-tunable laser action from new BODIPY dyes.
    Author: Ortiz MJ, Garcia-Moreno I, Agarrabeitia AR, Duran-Sampedro G, Costela A, Sastre R, López Arbeloa F, Bañuelos Prieto J, López Arbeloa I.
    Journal: Phys Chem Chem Phys; 2010 Jul 28; 12(28):7804-11. PubMed ID: 20502810.
    Abstract:
    New BODIPY dyes with two 4-formylphenyl, 4-(2,2-dimethoxycarbonylvinyl)phenyl and 4-(2,2-dicyanovinyl)phenyl groups at the 3- and 5-positions have been successfully designed and synthesized via palladium-catalyzed coupling reaction or Knoevenagel-type condensations. Structural modification of the BODIPY core via conjugation-extending residues significantly affects the spectroscopy and photophysical properties of the BODIPY fluorophore. These substituents cause the largest bathochromic shift in both absorption and emission spectra, which are shifted toward the red compared to its 4-phenylsubstituted analogue. Additionally, the fluorescence quantum yields and the Stokes shifts are also significantly higher than the corresponding phenyl-substituted dye. New BODIPY dyes have a high laser photostability, superior to that of commercial dyes with laser emission in the same spectral region, such as Perylene Red and Rhodamine 640. The substitution introduced in these derivatives allows to obtain tunable laser emission with a bandwidth of 0.15 cm(-1) and a tuning range of up to 50 nm. So with these three dyes it is possible to cover the spectral range 590-680 nm in a continuous way and with stable laser emission and small linewidth.
    [Abstract] [Full Text] [Related] [New Search]