These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nifedipine induces peroxisome proliferator-activated receptor-gamma activation in macrophages and suppresses the progression of atherosclerosis in apolipoprotein E-deficient mice. Author: Ishii N, Matsumura T, Kinoshita H, Fukuda K, Motoshima H, Senokuchi T, Nakao S, Tsutsumi A, Kim-Mitsuyama S, Kawada T, Takeya M, Miyamura N, Nishikawa T, Araki E. Journal: Arterioscler Thromb Vasc Biol; 2010 Aug; 30(8):1598-605. PubMed ID: 20508203. Abstract: OBJECTIVE: Nifedipine, an L-type calcium channel blocker, protects against the progression of atherosclerosis. We investigated the molecular basis of the antiatherosclerotic effect of nifedipine in macrophages and apolipoprotein E-deficient mice. METHODS AND RESULTS: In macrophages, nifedipine increased peroxisome proliferator-activated receptor-gamma (PPARgamma) activity without increasing PPARgamma-binding activity. Amlodipine, another L-type calcium channel blocker, and 1,2-bis-(o-aminophenoxy)-ethane-N,N,-N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), a calcium chelator, decreased PPARgamma activity, suggesting that nifedipine does not activate PPARgamma via calcium channel blocker activity. Inactivation of extracellular signal-regulated kinase 1/2 suppressed PPARgamma2-Ser112 phosphorylation and induced PPARgamma activation. Nifedipine suppressed extracellular signal-regulated kinase 1/2 activation and PPARgamma2-Ser112 phosphorylation, and mutating PPARgamma2-Ser112 to Ala abrogated nifedipine-mediated PPARgamma activation. These results suggested that nifedipine inhibited extracellular signal-regulated kinase 1/2 activity and PPARgamma2-Ser112 phosphorylation, leading to PPARgamma activation. Nifedipine inhibited lipopolysaccharide-induced monocyte chemoattractant protein-1 expression and induced ATP-binding cassette transporter A1 mRNA expression, and these effects were abrogated by small interfering RNA for PPARgamma. Furthermore, in apolipoprotein E-deficient mice, nifedipine treatment decreased atherosclerotic lesion size, phosphorylation of PPARgamma2-Ser112 and extracellular signal-regulated kinase 1/2, and monocyte chemoattractant protein-1 mRNA expression and increased ATP-binding cassette transporter A1 expression in the aorta. CONCLUSIONS: Nifedipine unlike amlodipine inhibits PPARgamma-Ser phosphorylation and activates PPARgamma to suppress monocyte chemoattractant protein-1 expression and induce ATP-binding cassette transporter A1 expression in macrophages. These effects may induce antiatherogenic effects in hypertensive patients.[Abstract] [Full Text] [Related] [New Search]