These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of neutrophil derived oxidants and elastase in lipopolysaccharide-mediated renal injury.
    Author: Linas SL, Whittenburg D, Repine JE.
    Journal: Kidney Int; 1991 Apr; 39(4):618-23. PubMed ID: 2051718.
    Abstract:
    Gram-negative bacterial sepsis is frequently associated with acute renal failure but the specific effects of lipopolysaccharide (LPS) and other bacterial products on kidney function are not known. Since either LPS or formyl-methionyl-leucyl-phenylalanine (FMLP)--a chemotactic peptide from bacterial cell walls--activate neutrophils (PMN) to release a number of potentially toxic factors in vitro, we determined the effect of adding PMN with LPS and/or FMLP to isolated perfused rat kidneys. Isolated rat kidneys perfused with LPS alone or LPS and normal PMN had normal glomerular filtration rates (GFR) and tubular Na reabsorption (TNa). Kidneys perfused with FMLP alone or FMLP and normal PMN also had normal GFR and TNa. In contrast, addition of PMN with both FMLP and LPS caused progressive renal dysfunction. For example, after 60 minutes of perfusion, GFR was reduced from 610 +/- 31 to 147 +/- 17 microliters/min/g and TNa from 97 +/- 1 to 72 +/- 2%, both P less than 0.01. Perfusion with the O2 metabolite scavengers catalase or dimethylthiourea afforded no protection while perfusion with the neutrophil elastase inhibitor Eglin C conferred substantial, but not complete, protection: GFR 492 +/- 34 microliters/min/g; TNa 91 +/- 3%. However, perfusion with both Eglin C and catalase completely prevented the toxic effects of LPS and FMLP-treated PMN on renal function. We conclude that in isolated kidneys, 1) the toxic effects of LPS requires FMLP-treated PMN and that 2) LPS and FMLP treated PMN cause progressive renal injury which is mediated by both O2 metabolites and neutrophil elastase.
    [Abstract] [Full Text] [Related] [New Search]