These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cationic and anionic lipoplexes inhibit gene transfection by electroporation in vivo.
    Author: Mignet N, Vandermeulen G, Pembouong G, Largeau C, Thompson B, Spanedda MV, Wasungu L, Rols MP, Bessodes M, Bureau MF, Préat V, Scherman D.
    Journal: J Gene Med; 2010 Jun; 12(6):491-500. PubMed ID: 20527042.
    Abstract:
    BACKGROUND: Nonviral gene therapy still suffers from low efficiency. Methods that would lead to higher gene expression level of longer duration would be a major advance in this field. Lipidic vectors and physical methods have been investigated separately, and both induced gene expression improvement. METHODS: We sought to combine both chemical and physical methods. Cationic or anionic lipids can potentially destabilize the cell membrane and could consequently enhance gene delivery by a physical method such as electrotransfer. A plasmid model encoding luciferase was used, either free or associated with differently-charged lipoplexes before electrotransfer. RESULTS: Electrotransfer alone strongly enhanced gene expression after intramuscular and intradermal injection of naked DNA. On the other hand, cationic and anionic lipoplex formulations decreased gene expression after electrotransfer, whereas poorly-charged thiourea-based complexes, brought no benefit. Pre-injection of the lipids, followed by administration of naked DNA, did not modified gene expression induced by electroporation in the skin. CONCLUSIONS: The results obtained in the present study suggest that packing of DNA plasmid in lipoplexes strongly decreases the efficiency of gene electrotransfer, independently of the lipoplex charge. Non-aggregating complexes, such as poorly-charged thiourea-based complexes, should be preferred to increase DNA release.
    [Abstract] [Full Text] [Related] [New Search]