These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dependence of Yb-169 absorbed dose energy correction factors on self-attenuation in source material and photon buildup in water. Author: Medich DC, Munro JJ. Journal: Med Phys; 2010 May; 37(5):2135-44. PubMed ID: 20527547. Abstract: PURPOSE: Absorbed dose energy correction factors, used to convert the absorbed dose deposited in a LiF thermoluminescent dosimeter (TLD) into the clinically relevant absorbed dose to water, were obtained for both spherical volumetric sources and for the model 4140 HDR Yb-169 source. These correction factors have a strong energy dependence below 200 keV; therefore, spectral changes were quantified as Yb-169 photons traveled through both source material (Yb2O3) and water with the corresponding absorbed dose energy correction factors, f(r, theta), calculated as a function of location in a phantom. METHODS: Using the MCNP5 Monte Carlo radiation transport simulation program, the Yb-169 spectrum emerging from spherical Yb2O3 sources (density 6.9 g/cm3) with radii between 0.2 and 0.9 mm were analyzed and their behavior compared against those for a point-source. The absorbed dose deposited to both LiF and H2O materials was analyzed at phantom depths of 0.1-10 cm for each source radius and the absorbed dose energy correction factor calculated as the ratio of the absorbed dose to water to that of LiF. Absorbed dose energy correction factors for the Model 4140 Yb-169 HDR brachytherapy source similarly were obtained and compared against those calculated for the Model M-19 Ir-192 HDR source. RESULTS: The Yb-169 average spectral energy, emerging from Yb2O3 spherical sources 0.2-0.9 mm in radius, was observed to harden from 7% to 29%; as these photons traveled through the water phantom, the photon average energy softened by as much as 28% at a depth of 10 cm. Spectral softening was dependent on the measurement depth in the phantom. Energy correction factors were found to vary both as a function of source radius and phantom depth by as much as 10% for spherical Yb2O3 sources. The Model 4140 Yb-169 energy correction factors depended on both phantom depth and reference angle and were found to vary by more than 10% between depths of 1 and 10 cm and angles of 0 degrees and 180 degrees. This was in contrast to that of the Model M-19 Ir-192 source which exhibited approximately 3.5%-4.4% variation in its energy correction factors from phantom depths of 0.5-10 cm. The absorbed dose energy correction factor for the Ir-192 source, on the other hand, was independent of angle to within 1%. CONCLUSIONS: The application of a single energy correction factor for Yb-169 TLD based dosimetry would introduce a high degree of measurement uncertainty that may not be reasonable for the clinical characterization of a brachytherapy source; rather, an absorbed dose energy correction function will need to be developed for these sources. This correction function should be specific to each source model, type of TLD used, and to the experimental setup to obtain accurate and precise dosimetric measurements.[Abstract] [Full Text] [Related] [New Search]